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The three-dimensional motion of an o!shore compliant tower using both rigid and
#exible beam models is studied in this paper. The tower is modelled as a beam supported by
a torsional spring at the base with a point mass at the free end. The torsional spring constant
is the same in all directions. When the beam is considered rigid, the two-degree-of-freedom
model is employed. The two degrees constitute the two angular degrees of spherical
co-ordinates, and the resulting equations are coupled and non-linear. When the beam is
considered as elastic, three displacements are obtained as functions of the axial co-ordinate
and time; again with coupled and non-linear equations of motion. The free and the forced
responses due to deterministic loads are presented. The free responses of the rigid and elastic
beams show rotating elliptical paths when viewed from above. The rate at which the path
rotates depends on the initial conditions. When a harmonic transverse loading is applied in
one direction, the displacement in that direction shows subharmonic resonance of order 1/2
and 1/3 while the displacement in the perpendicular direction is a!ected minimally. Next, in
addition to the harmonic load in one direction, a transverse load is applied in the
perpendicular direction. The transverse load varies exponentially with depth but is constant
with time. It is found that the transverse load a!ects the transverse displacements in the
perpendicular direction minimally.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The purpose of this paper is to show how to model and predict three-dimensional responses
of a structure in an ocean environment. O!shore structures are used in the oil industry as
exploratory, production, oil storage, and oil landing facilities. Detailed speci"cations and
descriptions can be found in Hydrodynamic of O+shore Structures by Chakrabarti [1].
O!shore structures are designed to be self-supporting and su$ciently stable for o!shore

operations such as drilling and production of oil. In general, there are two types of
stationary o!shore structures: "xed and compliant. Fixed structures are designed to
withstand environmental forces without any substantial displacement. Compliant
structures, on the other hand, are designed to allow small but not negligible deformation
and de#ection. While the stability of "xed structures is provided by structural rigidity, the
stability of compliant structures is provided by tension due to buoyancy chambers. For
these compliant structures, the dynamic responses need to be explored fully.
The "xed structures are economically feasible only up to water depths in the range of

300}500 m. Fixed platforms are indeed the most popular and proli"c structures for water
depths of 100}200 m. However, they become impractical for deep water because they must
�Currently at the Woods Hole Oceanographic Institution.
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Figure 1. O!shore compliant towers: (a) articulated tower; (b) tension leg platform (TLP).
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be built stronger and bulkier than the equivalent compliant structures. In recent years, the
need to explore deeper water has made compliant structures more popular. Compliant
towers are believed to be economically feasible in water depths exceeding 600 m.
Here, we will consider compliant structures. In particular, we are interested in articulated

towers and tension leg platforms (TLP) as shown in Figure 1. An articulated tower includes
a ballast chamber near the bottom, a buoyancy chamber near the surface of the water, and
a shaft in between. A TLP is vertically moored by tendons at each corner of the platform.
Buoyancy is provided by the fully submerged pontoon and partially submerged hulls. Risers
are production-related pipes.
An o!shore structure in an ocean environment is subjected to loadings due to wind,

current, and waves. When the #uid passes by the structure, it exerts forces in the direction of
the #ow due to inertia, drag, and added mass e!ects. The inertia force is the force exerted by
the #uid as it accelerates and decelerates around the structure. The drag force is due to the
pressure di!erence between the downstream and upstream region. The added mass e!ect is
due to the fact that the surrounding #uid is accelerated with the structure.
As well as these in-plane #uid forces, the #uid also exerts a lift force in the direction

perpendicular to the #ow and the structure. When the #ow passes around a cylinder at
a Reynolds number greater than 40, the vortices attached to the cylinder start to shed
alternately creating the well-known von KaH rmaH n vortex street. These vortices exert an
oscillatory force on the cylinder in the direction perpendicular to both the #ow and the
structure.
Therefore, the vibration of an o!shore structure in an ocean environment is inherently

a three-dimensional phenomenon. When the dynamic response of a compliant tower in an
ocean environment is considered, the vertical member of the tower is modelled as either
rigid or elastic. The three-dimensional behavior of the rigid model has been studied by Jain
and Kirk [2] and Bar-Avi and Benaroya [3]. The former used two rigid beams in order to
model a double-articulated o!shore structure, and the latter used one rigid beam for a single
articulated o!shore structure. In their derivations, the spherical co-ordinates are used to
describe the motion of the beam. Jain and Kirk showed that if the waves and the current are
collinear, the response is two dimensional, but if the #uid motions are not collinear, the
response is three-dimensional whirling oscillation.
So far, most elastic models are planar models so that only forces in one plane can be

included. Adrezin and Benaroya [4, 5] examined the non-linear transverse behavior of
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a tension leg platform with time-dependent tension due to gravity and buoyancy, which
depended on the current con"guration of the structure. Han and Benaroya [6, 7]
investigated the non-linear coupled transverse and axial responses. They both used "nite
di!erence methods. McNamara and Lane [8] and Sebastiani et al. [9] used "nite element
models. In all cases, only the response due to in-plane #uid force was examined.
Leonard and Young [10] developed a three-dimensional "nite element method. They saw

behaviors similar to those observed in reference [2] in their study of rigid models.
A compliant tower is designed to be #exible. Therefore, the rigid model may not be

su$cient. On the other hand, #exible models with #uid forces con"ned to one plane do not
capture the three-dimensional aspects of the problem. Therefore, in this paper, we devise
a #exible model that can include the #uid forces in three dimensions. The equations of
motion are solved numerically using the "nite di!erence method.
First, the equations of motion of the three-dimensional model are derived for two cases:

rigid structure and elastic structure. Second, the free responses of the rigid and the elastic
models are compared. The free response obtained using the rigid model allows us to gain
con"dence in the formulation and the numerical results obtained using the elastic model.
Finally, the forced responses due to deterministic loads are investigated. Two cases are
studied in particular. The "rst case is when a harmonic (in time) load is applied in one
direction, and the second case is when steady and harmonic loads are applied in mutually
perpendicular directions. The second case can be thought of as the three-dimensional
loading arising from a current that also induces vortex shedding. The responses due to these
simple #uid force models will prepare us for the study of responses due to more complicated
#uid loading models.

2. MATHEMATICAL FORMULATIONS

2.1. RIGID MODEL

In this study, the vertical member of an articulated tower or a leg of a tension leg platform
is modelled as a smooth cylindrical beam, the support at the base as a torsional spring, and
the structures above the water line as a point mass. It is assumed that the base of the
torsional spring is free to rotate in any direction.
The equations of motion when the beam is considered rigid are derived in this section.

From Figure 2, the system can be described with two angular degrees of freedom. The
equations of motion for a similar system were obtained in references [2, 3]. The equations of
motion are re-derived here.
The kinetic energy of the system is given by

KE"�
�
���� [I

�
] ���#�

�
M

�
�<

�
���<

�
�, (1)

where [I
�
] is the mass moment of inertia matrix of the beam about the base,M

�
is the point

mass, and <
�
is the velocity of the point mass. The "rst term is the kinetic energy of the

beam, and the second term is the kinetic energy of the point mass.
We consider three frames of reference, xyz, x�y�z�, and x

�
y
�
z
�
, as shown in Figure 3. xyz is

the inertial reference frame, x�y�z� is obtained by rotating xyz by angle � about the x-axis.
x
�
y
�
z
�
is obtained by rotating x�y�z� by � about the z�-axis. x

�
y
�
z
�
is also called the body

frame of reference since x
�
-axis coincides with the axis of the beam.

The beam experiences two angular velocities, �Q about the x-axis and �Q about the z�-axis.
The angular velocity of the beam is then

�"�Q i#�Q k�, (2)



Figure 2. Rigid beam model.

Figure 3. Reference and body frames.
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where i and k� are unit vectors in the x and z� directions respectively. We choose to express
the angular velocity in the body frame of reference. The transformations between the unit
vectors i and k� and the unit vectors of the body frame of reference are

i"cos �i
�
!sin � j

�
, k�"k

�
. (3)
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Therefore, the angular velocity in the body frame of reference is given by

�"�Q cos �i
�
!�Q sin �j

�
#�Q k

�
, (4)

or in matrix form,

���"
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������

. (5)

The mass moment of inertia about the base expressed in the body frame of reference is
given by
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where r
�
and r

�
are the outer and inner radius of the beam,M is the total mass of the beam,

and ¸ is the length of the beam.
The kinetic energy of the beam is given by
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The velocity of the point mass is expressed in the inertial frame of reference. First, the
displacement of the point mass is

r
�
"¸ cos �i#¸ sin � cos�j#¸ sin � sin�k. (8)

The velocity is obtained by taking the derivative with respect to time. Since the
displacement is expressed in the inertial frame, the derivatives of the unit vectors are zero.
The velocity of the point mass is then given by

�<
�
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�Q cos � sin�#�Q sin � cos�
���

. (9)

The kinetic energy of the point mass is then
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Combining equations (7) and (10), the kinetic energy of the system is given by
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The potential energy is stored in the torsional spring and is given by

PE"�
�
k��. (13)

This assumes that the structure can only bend, not twist. Therefore, the Lagrangian is given
by
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Lagrange's equations are given by

d

dt �
�L
�qR

�
�!

�L
�q

�

"Q
���

, k"1, 2, (15)

where Q
���

is the generalized non-conservative force associated with q
�
, and q

�
and q

�
are

� and � respectively. For an unforced system, the equations of motion are given by
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where J
�
and J

�
are given in equation (12). Note that equation (17) implies that �(t) is

a cyclic or ignorable co-ordinate, and the generalized momentum associated with �(t),
�Q (J

�
sin� �#J

�
cos� �), is conserved as long as Q

(��
is zero.

2.2. ELASTIC MODEL

When the vertical member is modelled as a #exible structure, certain assumptions are
made in order to simplify the problem. In addition to the assumptions used in the planar
Euler}Bernoulli beammodel [6], it is assumed that the rotation of the beam element can be
moderate but the strain is small.
In this section, the displacement "eld is obtained using Kirchho!'s hypothesis, and the

corresponding strain and stress "elds are obtained accordingly. The potential and kinetic
energies are then obtained to form the Lagrangian. The equations of motion are obtained
using Hamilton's principle.
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2.2.1. Displacements, strains, and stress

Using Kirchho!'s hypothesis, the displacement "eld is given by

u
�
"u(X, t)!>

�u
�
(X, t)

�X
!Z

�u
�
(X, t)

�X
,

u
�
"v(X, t), u
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"w(X, t), (18)

where u
�
, u

�
, and u

�
are displacements in the x, y, and z directions respectively. u, v, and

w are the mid-plane displacements of the cross-section in the x, y, and z directions
respectively. They are also the average displacements for a symmetric cross-section. It
should be noted that the displacements are measured from the original con"guration as
shown in Figure 4. The co-ordinates X, >, and Z mark the original location of a beam
element. Note that the average displacements are functions of X and t only.
The form of the displacement "eld implies that the shear e!ect is negligible when

compared to that of the bending moment. Therefore, we are assuming that the beam is
slender enough so that such an assumption is valid. Also, even though it is not obvious from
the displacement "eld, Novozhilov [12] showed that the strains need to be small when
compared to the rotation in order for the Kirchho!'s hypothesis to be valid. In
mathematical terms,

�u
�

�X
&�

�u
�

�X�
�
&�

�u
�

�X�
�
�1. (19)
Figure 4. Three-dimensional beam model.
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The general form of the Green strains are given by
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Using equation (19) and substituting the displacement "eld in equation (18) into equation
(20), the Green strains are then given by
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The notations used are: (�),�/�X and ( � ),�/�t.

2.2.2. Potential and kinetic energies

The strain energy is given by
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where 	
 is the second Piola}Kirchho! stress. SinceE
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The stress is related to strain by the constitutive relationship given by
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If we neglect the Poisson e!ect, since the transverse energies are at least an order of
magnitude smaller than the axial energies, 
"0, the strain energy is given by
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The strain energy can be reduced to
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where I
�
is the areamoment of inertia about the z-axis, and I

�
is the moment of inertia about

the y-axis through the centroid. Note that the expressions are signi"cantly reduced due to
the symmetrical cross-section.
The potential energy stored in the base support spring is given by
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This assumes that the structure can only bend, not twist.
The kinetic energy of the beam is simply
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and the kinetic energy of the point mass is
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2.2.3. ¹he governing PDEs and boundary conditions using variational principles

The Lagrangian is given by
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respectively. The virtual work done by these distributed loads is given by
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Using the extended Hamilton's principle,
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the equations of motion are given by
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and the boundary conditions are given by
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The boundary conditions in equations (36)}(38) indicate that displacements are zero at
X"0. Equations (39) and (40) are the moment conditions atX"0. The bending moments
in the y and z directions are proportional to the de#ection of the torsional spring in these
directions. Equations (41) and (42) state that there are no bending moments at the free end
(X"¸). Equation (43) expresses the fact that the normal force in the x direction is balanced
by the inertia force of the point mass in that direction. Equations (44) and (45) indicate that
the transverse shear forces are balanced by the inertial forces of the point mass in the
respective transverse directions.
Note that u (X, t), v (X, t), and w(X, t) are non-linearly coupled, and therefore, the

equations need to be solved simultaneously using numerical methods.

2.3. LINEARIZATION OF EQUATIONS OF MOTION

If we further assume that the rotation squared be small when compared to the linear
strain,

(�v/�X)���u/�X�1 and (�w/�X)���u/�X�1, (46)
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the Lagrangian in equation (31) becomes
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Then the equations of motion are given by
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�
vK!(�I

�
vK � )�#(EI

�
v� )�"f

�
,

�A
�
wK !(�I

�
wK � )�#(EI

�
w�)�"f

�
(48)

with boundary conditions

u(0, t)"0, v(0, t)"0, w(0, t)"0,

(EI
�
v�!kv�) �

���
"0, (EI

�
w�!kw�) �

���
"0,

EI
�
v��

���
"0, EI

�
w��

���
"0,

[EA
�
u�#M

�
uK ] �

���
"0,

[�I
�
vK �!(EI

�
v� )�#M

�
vK ] �

���
"0,

[�I
�
wK �!(EI

�
w�)�#M

�
wK ] �

���
"0. (49)

The equations of motion are decoupled, and we recover the linear elastic equations of
motion for each direction.

3. RESULTS ON THE FREE VIBRATION

The free responses of the non-linear three-dimensional rigid and elastic models are
considered. The free response of the rigid beam will then be used to gain con"dence in the
results obtained by the elastic model. For numerical purposes, the properties of the
structure given in Table 1 will be used.
The rigid and elastic models are solved numerically using MATLAB. The Runge}Kutta

method of order 4 or 5 is used. Fourteen nodes are used for the elastic model.
We can consider two di!erent types of vibration behavior: when the beam moves back

and forth in an arbitrary plane and when the beam rotates in three dimensions as shown in
Figure 5.



TABLE 1

Beam properties

Beam properties

Material Aluminum
Young's modulus, E 73)0 GPa
Density, � 2770 kg/m�
Point mass, M

�
0)236 kg

Torsional spring constant, k 38)8 N/m
Length, ¸ 1)27 m
Outer radius, r

�
0)0127m

Inner radius, r
�

0)0101m

Figure 5. Two types of three-dimensional motion in the absence of external loads: (a) planar 3-Dmotion; (b) full
3-D motion.
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The "rst type of behavior, Figure 5(a) can be induced by non-zero �(0) and zero �Q (0) for
any �Q (0) and �(0). When the motion is small enough such that the small angle assumption is
valid, the natural frequency of �(t) is approximately given by

f������	�"
1

2�	
k

M¸�/3#M
�
¸�#M(r�

�
#r�

�
)/4

. (50)

In our case, f������	�"1)25 Hz. When the motion is in two dimensions, � is allowed to turn
negative once it passes through �"0 as shown in Figure 6(a).
The second type, Figure 5(b), can be induced by non-zero �(0) and �Q (0) for any �Q (0) and

�(0).
For the rigid case, only a single co-ordinate, �, is required to describe the motion for the

planar model. This co-ordinate can take on positive or negative values as the beam swings



Figure 6. Sign conventions for �(t): (a) planar model; (b) three-dimensional model.

Figure 7. A sample path taken by the tip of the beam: (a) planar model; (b) three-dimensional model.
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back and forth through the vertical. On the other hand, for the three-dimensional model,
two co-ordinates, � and �, are required to describe the motion. In this case, �, which is
de"ned as the angle between the vertical and the beam, is always positive. This can be
observed in Figure 6(b).
Continuing this discussion, let us imagine two possible paths taken by the point mass

viewed from the top as shown in Figure 7. Figure 7(a) describes a two-dimensional motion
and Figure 7(b) a three-dimensional motion generated by slightly disturbing the
two-dimensional motion such that pointsA andC in Figure 7(a) coincide with points A and
C in Figure 7(b) respectively. As the point mass in two dimensions goes through ABCBA,
the point mass in three dimensions goes through ABCDA. �(t) at point C in Figure 7(a) is
negative, where �(t) at point C in Figure 7(b) is positive but with the same magnitude.
Therefore, the fundamental frequency of �(t) calculated in three dimensions is equivalent to
the fundamental frequency of ��(t)� in two dimensions, 2)5 Hz. However, this is a highly
idealized case, and we expect that the fundamental frequency of �(t) in three dimensions will
vary with initial conditions, but be close to 2)5 Hz.
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In summary, Figures 5(a), 6(a), and 7(a) depict planar motion, and Figures 5(b), 6(b), and
7(b) depict fully three-dimensional motion.

3.1. THREE-DIMENSIONAL RIGID MODEL

Let us keep in mind the fact that the non-linear rigid model formulation does not make
any assumptions regarding the angle of rotation. Therefore, the results are valid for any
angle of de#ection �. Here, let us examine the case where the motion is in three dimensions
by considering the initial conditions

�(0)"0)2 rad, �Q (0)"0, �(0)"0, �Q (0)"2 rad/s. (51)

Figure 8 shows �(t) and its power spectral density plot, and Figure 9 shows �(t) and its
power spectral density plot in logarithmic scale. The decibel here is de"ned by

dB"20 log
��
=( f ), (52)

where=( f ) is the discrete one-sided power spectrum with units of rad� (units of � squared).
Since the logarithm of a dimensionless quantity must be taken, the argument of the
logarithmic function=( f ) is implicitly divided by 1 rad� to obtain non-dimensionalization.
The power spectral density plot reveals that the fundamental frequency is about 2)48 Hz

for both �(t) and �(t). It should be noted that the natural frequency of 2)48 Hz for �(t) is
Figure 8. Angle of de#ection �(t): (a) for early time; (b) over 80 s, and (c) its PSD plot.



Figure 9. Angle of rotation �(t): (a) for early time; (b) over 80 s, and (c) its PSD plot.
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consistent with the frequency of 1)25 Hz obtained in equation (50) when the motion is
planar and linear.
Figure 10 shows the tip axial displacement, u(¸, t). The PSD plot shows that its

fundamental frequency is at about 2)5 Hz. This frequency is close to the fundamental
frequency of �(t) since �(t) completes one cycle while u(¸, t) also completes one cycle as
shown in Figure 7(b). Note that the transverse displacements, v (¸, t) and w(¸, t), complete
half a cycle for each cycle of �(t) and u(¸, t).
Figures 11 and 12 show the tip transverse displacements, v(¸) and w(¸), in the y and

z directions and their power spectral density plots. The displacements are related to �(t) and
�(t) as shown in Figure 2 and therefore by the following relationships:

u(X, t)"X cos �(t)!X, v(X, t)"X sin �(t) cos� (t), w(X, t)"X sin �(t) sin�(t), (53)

where the units are all in meters.
The transverse displacements show a beating phenomenonwith two visible frequencies at

1)25 and 0)035 Hz. The envelope or the beat frequency 0)035 Hz is unexpected from the
linear analysis. The consequence of this beating phenomenon on the overall response is
clearer when the motion is viewed from the top in Figure 13. The horizontal axis in
Figure 13 is the transverse displacement in the y direction, and the vertical axis is the
transverse displacement in the z direction. The free end follows an elliptical path that rotates
in the counterclockwise direction at 0)035 Hz.
In order to understand as to why the path rotates, let us look at what happens for the "rst

0)81 s as shown in Figure 14. From the "gure, we "nd that � makes two cycles in about



Figure 10. Axial displacement u(¸, t): (a) for early time; (b) over 80 s, and (c) its PSD plot predicted by the rigid
model.

Figure 11. Transverse displacement v(¸, t): (a) for early time; (b) over 80 s, and (c) its PSD plot predicted by the
rigid model.
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Figure 12. Transverse displacement w(¸, t): (a) for early time; (b) over 80 s, and (c) its PSD plot predicted by the
rigid model.

Figure 13. Free response viewed from the top, predicted by the rigid model, for (a) 0(t(7)1 s,
(b) 0(t(14)2 s, (c) 0(t(21)3 s, (d) 0(t(28)4 s.
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Figure 14. Free response for 0)81 s. The symbol � is placed at the initial location, � at �"2�, and * after
� completes two cycles respectively. (a) �(t), (b) �(t), (c) w(¸).
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0)81 s, and � varies from 0 to 2� rad in about 0)76 s. After two cycles of � have been
completed, the free end does not return to its original location so that the path seems to be
rotating counterclockwise, and the transverse displacements, v(X, t) and w(X, t), show
beating. It is interesting to note that this beating phenomenon does not appear in �(t), �(t)
nor in u(¸, t).
Let us further investigate the beating phenomenon that appears in the transverse

displacements plot. Let us vary �(0) and �(0) one at a time. Figure 15 shows v(¸, t) with
varying time, and Figure 16 shows the top views for �Q (0)"4 rad/s and �(0)"0)07, 0)09,
0)11, and 0)13 rad. They show that as the initial angle increases, the amplitude increases and
the beat frequency decreases. Comparing Figure 15(a) with 15(d), where the initial angle
almost doubled, the beat frequency decreased almost by a factor of three. While the beat
frequency varied with the initial conditions, the &&high'' frequency inside the envelope
remained at about 1)25 Hz.
Figures 17 and 18 show v(¸, t) with varying time and the top views for �(0)"0)05 rad

and �Q (0)"4, 6, 8, and 10 rad/s. It shows that as �Q (0) increases, the beat frequency
decreases. Comparing Figure 17(a) and 17(b), where the initial angle is increased by
50%, the frequency decreases by about a factor of two. Again, while the beat frequency
varies with initial conditions, the &&high'' frequency inside the envelope remained at about
1)25 Hz.
In Figures 17(a,b) and 18(a,b), the major axis of the response path coincides with the

x-axis at the start of the response. When �Q (0)"8 rad/s, the length of the major and minor
axes of the elliptical path are very close to each other so that the path is almost circular.
Therefore, the path seems stationary. As �Q (0) is increased as shown in Figure 17(d), the path
continues to rotate in the same direction. In this case, the minor axis coincides with the
x-axis in the beginning.



Figure 15. Transverse displacement v(¸, t) when �Q (0)"4 rad/s. (a) �(0)"0)07, (b) �(0)"0)09, (c) �(0)"0)11,
(d) �(0)"0)13 rad.

Figure 16. Free response viewed from top when �Q (0)"4 rad/s. (a) �(0)"0)07, (b) �(0)"0)09, (c) �(0)"0)11,
(d) �(0)"0)13 rad.
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Figure 17. Transverse displacement v(¸, t) when �(0)"0)05 rad. (a) �Q (0)"4, (b) �Q (0)"6, (c) �Q (0)"8,
(d) �Q (0)"10 rad/s.

Figure 18. Free response viewed from top when �(0)"0)05 rad. (a) �Q (0)"4, (b) �Q (0)"6, (c) �Q (0)"8,
(d) �Q (0)"10 rad/s.
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Figure 19. Superposition of two planar models.
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From the response plots, we can conclude the following:

1. The fundamental frequencies of �(t) and �(t) in three dimensions can be approximated by
twice the fundamental frequency of �(t) in two dimensions.

2. The rotation rate of the elliptical path varies with initial conditions, decreasing with
increasing �(0) and �Q (0).

3. The high-frequency component of the response at 1)25 Hz in the transverse
displacements was not a!ected or a!ected minimally by the initial conditions.

4. The rotation rate of the elliptical path is more sensitive to �(0) than �Q (0). Therefore, for
a small enough �(0), the elliptical path may seem stationary (not rotating). A stationary
path indicates that the motions in the xy and the xz plane are independent of each other.
This is an important result since it implies that if the motion is small (small �(0)), the
motion can be approximated by two planar models. This is also seen in the equations of
motion for the elastic model in section 2.3. Three displacements are decoupled when the
angle of rotation squared is small compared to the linear strain (equation (46)). For
the rigid model, we can make the same analysis such that the transverse displacement of
the tip can be obtained by solving the two decoupled equations of motion given by

J
�
�G
�
#k�

�
"0, J

�
�G
�
#k�

�
"0, (54)

where J
�
is given in equation (12), and �

�
(t) and �

�
(t) are the angles of de#ection in the xy

and xz planes as shown in Figure 19. The transverse displacements are then

v(¸, t)"¸ cos �
�
(t), w(¸, t)"¸ cos �

�
(t). (55)

3.2. THREE-DIMENSIONAL ELASTIC MODEL

Similar response plots are obtained using the non-linear elastic model. The
corresponding initial conditions are obtained using equation (53) and are given by

u(X, 0)"X (cos �(0)!1)"!0)0199Xm,
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v(X, 0)"X sin �(0) cos�(0)"0)199Xm,

wR (X, 0)"X�Q (0) cos �(0) sin�(0)#X�Q (0) sin �(0) cos�(0)"0)397Xm/s,

uR (X, 0)"0, vR (X, 0)"0, w(X, 0)"0. (56)

The non-linear elastic model is valid for a wider range of angles of de#ection from the
x-axis (�
/�X and �w/�X) than the linear elastic model. Recall that the linear elastic model
requires that the rotation squared be small when compared to the linear strain,

(�v/�X)���u/�X�1 and (�w/�X)���u/�X�1, (57)

so that the equations of motion are decoupled.
In the non-linear elastic model, the rotation is assumed to be moderate such that

(�v/�X)�&�u/�X�1 and (�w/�X)�&�u/�X�1. (58)

The initial conditions in equation (56) are chosen such that the rotation (from the x-axis)
squared, (�v/�X)�, is comparable to the linear strain, �u/�X. Therefore, the linear model is
not valid for this set of initial conditions.
Figures 20 and 21 show the tip transverse displacements, v(¸, t) and w(¸, t), in the y and

z directions and their power spectral density plots. The average natural frequency is shown
in the PSD plots and is 1)22 Hz, which is lower than that of the rigid beam. This is consistent
with our intuition since the rigid beam is &&sti!er'' than the elastic beam, and the sti!er
beam vibrates at a higher frequency. When we look at the transverse displacement plot in
Figure 20. Transverse displacement v(¸, t) predicted by the elastic model: (a) 0(t(5 s; (b) 0(t(80 s; (c) PSD.



Figure 21. Transverse displacement w(¸, t) predicted by the elastic model: (a) 0(t(5 s; (b) 0(t(80 s;
(c) PSD.

Figure 22. Free response viewed from the top, predicted by the elastic model: (a) 0(t(20 s; (b) 0(t(40 s;
(c) 0(t(60 s; (d) 0(t(80 s.
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TABLE 2

Results on free vibration

Fundamental frequency Fundamental frequencies Beat frequency of
of u(¸, t) (Hz) of v (¸, t) and w (¸, t) (Hz) v (¸, t) and w(¸, t) (Hz)

Rigid model 2)50 1)25 0)0350
Elastic model 2)44 1)22 0)0126

Figure 23. Axial displacement u(¸, t): (a) 0(t(5 s; (b) 0(t(80 s; and (c) its PSD plot.
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Figures 20(b) and 21(b), the beat frequency seems to be at 0)0126 Hz (period of 79)5 s), which
is lower than that of the rigid beam. The top views in Figure 22 show rotating ellipses at
0)0126 Hz. For an easy comparison, the results on the free vibration are summarized in
Table 2.
Figure 23 shows the axial displacement u(¸, t) and its PSD. The PSD plot shows

a dominant frequency at 2)44 Hz, which is twice the fundamental frequency of the transverse
motion. This was seen in the rigid case and also in the studies conducted by Han and
Benaroya [5, 6].
The numerical results obtained using the three-dimensional elastic model appear

reasonable when compared with those of the rigid model.

4. SAMPLE RESULTS FOR THE FORCED RESPONSE OF THE ELASTIC MODEL

In this section, we consider two loading situations. The "rst case is when a harmonically
varying (in time) transverse load is applied in the y direction, and the second is when



Figure 24. Distributed transverse loads.

TABLE 3

¹ransverse loads

Case I f
�
(X, t)"2(exp (X)!1) cos�

�
t f

�
(X, t)"0

Case II f
�
(X, t)"2 (exp (X)!1) cos�

�
t f

�
(X, t)"2 (exp (X)!1)
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a non-harmonic load is applied in the y direction along with a harmonic load in the
z direction. In all cases, the transverse loads are exponential inX. The distributed transverse
loads in Figure 24 are given in Table 3.

4.1. CASE I: HARMONIC LOADING IN THE y DIRECTION

In this section, we investigate the forced response by varying the forcing frequencies. The
initial velocities are set to zero and the initial displacements are given by

u(X, 0)"!0)002503Xm, v(X, 0)"w (X, 0)"0)05Xm. (59)

This is when the beam is initially placed in the "rst octant. Note that when the initial
transverse displacements are given, the initial axial displacement can be found from the
equations of motion and boundary conditions.
Figures 25 and 26 show the transverse displacements v (¸, t) and their PSD plots when the

forcing frequencies are varied from � to 9� at � rad/s increments. The vertical lines in the



Figure 25. Transverse displacement v(¸, t) when f
�
"2(exp(X)!1) cos�

�
t. (a) �

�
"�, (b) �

�
"2�, (c) �

�
"3�,

(d) �
�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.

Figure 26. PSD plots for v(¸, t) when f
�
"2 (exp(X)!1) cos�

�
t. (a) �

�
"�, (b) �

�
"2�, (c) �

�
"3�,

(d) �
�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.
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Figure 27. Transverse displacementw(¸, t) when f
�
"2(exp(X)!1) cos�

�
t. (a) �

�
"�, (b) �

�
"2�, (c) �

�
"3�,

(d) �
�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.
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PSD plots mark the forcing frequencies. When the forcing frequency is below the
fundamental frequency, as shown in Figure 25(a), v(¸, t) responds dominantly at the forcing
frequency. When the forcing frequency is increased to the vicinity of the fundamental
frequency, beating occurs as shown in Figures 25(b,c) and 26(b,c). When this happens, the
amplitude of vibration also increases. When the forcing frequency is increased even more, in
Figure 26(d)}(f ), we see subharmonic resonances of order 1/2, where the system responds at
the natural frequency when the forcing frequency is close to twice the natural frequency, and
in Figure 26(g)}(i) we see subharmonic resonances of order 1/3. It should be noted that when
v(¸, t) enters subharmonic resonance, the response looks similar to the free response. That
is, v(¸, t) vibrates mostly at the fundamental frequency.
Figures 27 and 28 show the transverse displacements w(¸, t) and their PSD plots. The

transverse displacement in the z direction is minimally a!ected except for �
�
"2� and 3�,

at which v(¸, t) shows beating. However, the amplitude of w(¸, t) stays almost constant
throughout. In all nine cases, w(¸, t) responds at or near the fundamental frequency. The
subharmonic resonance discussion above also applies to Figures 28.
Figure 29 shows the view from the top for the "rst 5 s of motion. Due to the subharmonic

response in v(¸, t), which resembles the free response and virtually una!ected w(¸, t), Figure
29(d)}(i) looks similar to the top views of the free response, the response that we would
obtain when the beam is released from the initial position given by equation (59).
Figure 30 shows the phase plots, v(¸, t) versus vR (¸, t), and Figure 31 shows the PoincareH

maps strobed at the forcing frequency. If the ratio of the forcing frequency to the natural
frequency of v(¸, t) is a rational number, the PoincareH map will show a discrete number of
points. However, in our case, the ratio of the forcing frequency to the natural frequency of



Figure 28. PSD plots for w(¸, t) when f
�
"2 (exp(X)!1) cos�

�
t. (a) �

�
"�, (b) �

�
"2�, (c) �

�
"3�,

(d) �
�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.

Figure 29. Forced response viewed from the top when f
�
"2 (exp(X)!1) cos�

�
t. (a) �

�
"�, (b) �

�
"2�,

(c) �
�
"3�, (d) �

�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.
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Figure 30. Phase plot for v(¸, t). (a) �
�
"�, (b) �

�
"2�, (c) �

�
"3�, (d) �

�
"4�, (e) �

�
"5�, (f ) �

�
"6�,

(g) �
�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.

Figure 31. PoincareH maps for v(¸, t) that correspond to Figure 30. (a) �
�
"�, (b) �

�
"2�, (c) �

�
"3�,

(d) �
�
"4�, (e) �

�
"5�, (f ) �

�
"6�, (g) �

�
"7�, (h) �

�
"8�, (i) �

�
"9� rad/s.
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v(¸, t) may be an irrational number. In that case, v(¸, t) does not return exactly to its initial
value and the strobe points of the PoincareH map will never repeat. On the PoincareH map, the
strobe point will eventually "ll in a circle, and the motion is called quasiperiodic [12]. The
PoincareH maps in Figure 31 show circular patterns without repeating points, which
indicates that our system is quasiperiodic.

4.2. CASE II: HARMONIC AND NON-HARMONIC LOADINGS IN THE PERPENDICULAR

DIRECTIONS

Figures 32 and 33 show the response plots when the forcing frequency is � rad/s, and
Figures 35 and 36 when the forcing frequency is 6� rad/s. The initial conditions given in
equation (59) are used in all cases.
The transverse displacement in the y direction, v(¸, t), is almost unchanged from

Figure 25(a), where the non-harmonic force in the z direction was not used. In fact, if they
were plotted on the same "gure, they would overlap. On the other hand, the transverse
displacement in the z direction, w(¸, t), is shifted to the positive direction from Figure 27(a).
However, the frequency of oscillation remains the same. Therefore, for this particular case,
we can see that transverse motions in each direction are minimally a!ected by the forces in
the perpendicular directions. That is, the force in the z direction has a minimal e!ect on the
displacement in the y direction, and vice versa. The same can be said for the second case
when the forcing frequency is 6� rad/s.

5. SUMMARY AND CONCLUSIONS

The equations of motion of a beam supported by a torsional spring at the base and with
a point mass at the top were obtained, "rst by assuming the beam as rigid and second by
Figure 32. (a) Transverse displacement v(¸, t) and (b) PSD plot when f
�
"2(exp(X)!1) cos�t and

f
�
"2 (exp(X)!1).



Figure 33. (a) Transverse displacement w(¸, t) and (b) PSD plot when f
�
"2(exp(X)!1) cos�t and

f
�
"2 (exp(X)!1).

Figure 34. Forced response viewed from the top when f
�
"2(exp(X)!1)cos�t and f

�
"2(exp(X)!1) for

0(t(5 s.
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assuming it as elastic. When the beam was modelled as rigid, the two-degree-of-freedom
model, with two angular degrees of the spherical co-ordinate, was employed. When the
beam was modelled as elastic, the equations of motion are in terms of displacements in the
three directions measured from the original con"guration. Kirchho!'s hypothesis and



Figure 35. (a) Transverse displacement v(¸, t) and (b) PSD plot when f
�
"2(exp(X)!1) cos 6�t and

f
�
"2 (exp(X)!1).

Figure 36. (a) Transverse displacement w(¸, t) and (b) PSD plot when f
�
"2(exp(X)!1) cos 6�t and

f
�
"2 (exp(X)!1).

COMPLIANT TOWER 707



Figure 37. Forced response viewed from the top when f
�
"2(exp(X)!1)cos 6�t and f

�
"2(exp(X)!1) for

0(t(5 s.
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Hamilton's principle were used to obtain the equations of motion and boundary conditions.
The equations of motion of the elastic model are coupled non-linear partial di!erential
equations.
The free responses were obtained using both models, and the numerical results compare

very well including the fundamental frequency and the non-linear behavior. The rotating
path is unique to non-linear three-dimensional models. It was found that the precession rate
increases with increasing �(0) and �Q (0), or, equivalently, increasing v(X, 0), w(X, 0), v� (X, 0),
and wR (X, 0). Therefore, if those quantities are small enough, the motion in the xy and xz
planes can be assumed to be independent, and the response can be analyzed using two
planar models.
Once the numerical results of the elastic model were veri"ed, the forced responses

due to harmonic and non-harmonic loads were investigated. When the harmonic
load was applied in the y direction, the transverse displacement in the y direction
goes through a series of responses including beating and subharmonic resonances of
orders 1/2 and 1/3. On the other hand, the transverse displacement in the
perpendicular direction (z direction) was minimally a!ected. When the non-harmonic
force is added in the z direction, the transverse displacement in the z direction shifted
and its amplitude changed while the displacement in the perpendicular direction (y
direction) remained about the same. The PoincareH maps strobed at the forcing frequency
were plotted, and they reveal that the responses were quasiperiodic for the conditions
tested.
It will be interesting to observe chaotic behavior of the damped system for both rigid and

elastic models, since most physical systems are damped. Once the transient response
diminishes, the PoincareH maps strobed at the forcing frequency will be easier to read and
will reveal more about the system.
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